
Dra
ft

C++2Any Templates Reference

Vadim Zeitlin

February 8, 2004

Contents

0 Introduction 2

1 Template Files Overview 2

2 Variables 2
2.1 General Syntax .2
2.2 Variable Names .4
2.3 Built-in Variables . 4

2.3.1 Dollar sign$$. 4
2.3.2 Closing brace$} . 5
2.3.3 Comment$/ . 5

3 Sections 5
3.1 Syntax . 5
3.2 Section Names .5
3.3 Section Quantifiers .6
3.4 Section Parameters .6

A Appendix A: Standard Variables and Sections 7
A.1 Standard Sections .7
A.2 Standard Variables .7

B Appendix B: Example of a Template File 8

1

Dra
ft

0 Introduction

As explained in the overview of C++2Any , it uses the template files to allow the
user to customize the output of the program. This document describes the format
of these template files in details.

The first chapter gives a brief overview of the template files. The syntax details
are described in the chapters 2 and 3 and the appendix contains an example of a
commented template file which should make it easier to understand the concepts
described here. Please consult it while reading the main text.

1 Template Files Overview

The template files have, by convention,c2a extension, but it is not mandatory. A
template is a simple text file (in 7 bit ASCII) describing the output which should
be produced by the generator. The contents of the template file is normally copied
to the output as is, with two exceptions which are thevariable expansionsand the
sections.

The simplest example of variable expansions are the familiar (as they are mod-
eled, albeit loosely, after Unix shell variables) expressions$VAR or ${VAR} .
Such expansions may appear in any place in the output file, inside or outside a
section, and are replaced with their value on output. The paragraph 2 describes
them in more details.

But the variable expansion, although a powerful mechanism by itself, is not
enough as it doesn’t support loops which are used by the generator all the time:
for example, it may be necessary to generate some block of code for each method
of a class. The sections in the template files allow to do this. A section is simply
a block of text (usually containing some variable expansions) inside triple braces,
e.g. {{{<element> . . . }}} . They are described in details in the paragraph
3.

2 Variables

2.1 General Syntax

Anywhere inside the template text, a sequence of alphanumeric characters starting
with the dollar sign (’$’) is a variable. To include a literal dollar sign in the output
you should double it ("$$").

A variable expansion may be either simple:$VARor ${VAR} or more com-
plex but in this case only the latter form, with braces, can be used. If the former
form is used, the first character which can’t be part of the variable name, that is

2

Dra
ft

anything but a letter, digit, or the underscore, ends variable name so using braces
may be necessary even in a simple form, as in this example:

enum ${NAME}_Tag

as without the braces the variable name would be parsed asNAME_Tagwhich is
probably not intended.

A simple variable expansion just replaces the expression in the text with the
variable value. However in the${VAR} form, VARmay be a string containing
other variables. For example,${IID_$NAME} may be replaced with the value
of the variableIID_Foo if the variable$NAMEhas valueFoo.

Another supported construct are Bourne shell-like expressions${VAR+WORD}
and${VAR-WORD}. The value of the first of them isWORDif and only if vari-
ableVARis set and non empty, otherwise the expansion is empty. For example, to
include an optional intiializer in a variable declaration macro you could do

$NAME${VALUE+= $VALUE}

The value of the second form isVAR if the variable is set and not empty and
WORDotherwise. An example is choosing the base class for an interface in the
IDL template file:

interface $NAME : I${BASENAME-Dispatch}

To include a closing brace inside the expansion it has to be quoted with a dollar
sign ($} , see 2.3.2).

Sometimes it may be also useful to reverse the effect of${VAR+WORD}con-
struction, i.e. to only use the alternative value if the variable isnot set. To achieve
this you can use${VAR!WORD} form. For example, this fragment

HRESULT $NAME({{{ PARAM* {+, }
$TYPE $NAME}}}${RETVAL+${ISVOID!, } $RETTYPE $RETVAL});}}}

only adds a comma (presumably used to separate the following text from the even-
tual parameters) if the function has any parameters.

One of the conditional forms above must be used for the variables which may
not be set because an attempt to use an unset variable in any other way (for exam-
ple by trying to substitute its value directly using$NO_SUCH_VAR) would result
in a run-time error.

3

Dra
ft

2.2 Variable Names

The names of the existing variables are defined by the generator being used. By
convention, they are always in upper case, lower and mixed case variables are
reserved for future extensions and the underscore character has a special meaning
as explained below.

Variables value is defined by the section in which they appear. For example,
in this fragment

{{{ CLASS
class $NAME
{

{{{ METHOD
void $NAME();
}}}

};
}}}

the first occruence of the variable$NAMEstands for a class name while the second
one – for the method name. To access the variable from the enclosing section, a
double underscore may be used:

{{{ CLASS
{{{ METHOD

void $NAME()
{

puts("In $CLASS__NAME::$NAME");
}

}}}
}}}

It works as the scope resolution operator (::) in C++ and, accordingly, it is also
valid to use$__NAMEto refer to a global variable and not the value for the current
section. On the other hand, using a$SECT_NAMEoutside of the sectionSECTis
an error and is not permitted.

2.3 Built-in Variables

2.3.1 Dollar sign$$

This pseudo-variable expands to the dollar sign character. It must be used instead
of bare’$’ in the templates.

4

Dra
ft

2.3.2 Closing brace$}

This avriable simply expands to the closing brace character. It is useful for the
situations in which a bare closing brace has a special meaning (inside a conditional
variable expansion or after two other closing braces, for example).

2.3.3 Comment$/

This variable introduces a single-line comment in the template file. Everything
following $/ until the end of line is completely ignored by 2̧a.

3 Sections

3.1 Syntax

A section definition starts with a sequence of three braces"{{{" and ends with
a line consisting solely of three closing braces"}}}" , not counting whitespace.
After the starting sequence the section name should follow, possibly after some
amount of whitespace characters. The rest of the block, up to the closing se-
quence, is the section body and may contain arbitrary plain text, expansions of the
variables (see 2) and other embedded sections.

The {{{ and}}} sequences currently can’t be changed nor escaped and so
their special meaning can’t be changed. In an unlikely event that you need to
include }}} in the actually generated text, you must use the closing brace (see
2.3.2) variable:

}}$}

3.2 Section Names

The section name is not arbitrary. It specifies when the contents of this section is
going to be generated. As with the variable names, the available section names
depend on the generator used and, again, as with the variables, all standard section
names are in upper case only. Note that section names don’t have to be unique, it
is perfectly valid to have two or more occurences of the same name.

When the parser encounters a section namedELEMENT, it generates the sec-
tion body – expanding any variables and sections it contains in the process – for
each and every element of the given type known to the generator. For example, a
section namedCLASSwill be generated once for every class found in the input
file.

5

Dra
ft

Section names respect the scope just as the variable names do. Thus, a section
namedMETHODinside aCLASSsection really meansCLASS_METHODand will
be expanded for all methods of the current class.

3.3 Section Quantifiers

By default, all sections must appear at least once in the output and may do so
several times (such default behaviour helps to detect accidentally misspellt section
names). In some cases it may be desirable to have sections which might not appear
at all (e.g.ENUMsection is not mandatory in the output and doesn’t appear if there
are no enum declarations in the source file) or have those those which can’t appear
more than once.

To specify this in the template, one of the following characters may be ap-
pended to the section name (without intervening whitespace):

+ Specifies that the section may appear one or more times (this is the default)

? Specifies that a section may appear at most once, i.e. not appear at all or appear
once.

! Signals a unique section: it must appear exactly once.

* The most relaxed quantifier: the section may appear any number of times, in-
cluding0.

3.4 Section Parameters

After the section name (and, possibly, a quantifier) only the section parameters
may appear until the end of line. All parameters are optional and they all have the
form {X . . .} where’X’ is a special character which specifies the paramater and
the rest of text, until the closing brace, is the parameter value.

The following parameters are currently recognized:

+ String specified as value is used between the successive occurences of this sec-
tion. By default, the string is empty for single-line sections and is a blank
line for the multi-line ones, but using{+,} , for example, you may insert
commas between sections. This parameter can only be used with sections
which may appear multiple times.

- Alternative value parameter: if this section doesn’t occur at all (e.g.PARAM
section for a function not taking any parameters), the value of this parameter
is substituted instead. By default it is empty and so nothing is substituted.
This parameter can only be used with the optional sections.

6

Dra
ft

A Appendix A: Standard Variables and Sections

This appendix describes all standard C++2Any variables and sections.

A.1 Standard Sections

ENUMExpanded for eachenumdeclaration occuring in the source file. At global
scope, only namespace-scoped enums are considered, inside aCLASSsec-
tion – only the enums nested in the current class. The expansion of this
section may be empty if there are no exported enums in the source file.

ENTRYOnly valid inside anENUMand expands to all enumeration values there.

CLASS Expanded for each class or struct occuring in the source file. Inside an-
otherCLASSsection, only nested classes are considered, otherwise – only
those at namespace scope.

METHODOnly valid inside aCLASSsection and is expanded for each class method.

PARAMSOnly valid inside aMETHODsection and is expanded for each parameter
of the generated wrapper method. The expansion of this section may be
empty for void methods.

PARAMS_IMPLThis is similar toPARAMSbut expands into the parameters of
the original (“implementation”) method, not of the generated one. For the
existing backends, the two are different for the methods with non-void re-
turn value asPARAMSincludes the extra parameter used for the return value
andPARAMS_IMPLdoes not.

A.2 Standard Variables

NAMEThe name of the containing section or the global project name outside of
any section. This variable applies to all the sections.

HELP The help string, or description, extracted from the comments in the source
file. It may be empty.

VALUE Only valid insideENTRYsection and stands for the value of the enum
entry. It may be empty.

BASE Only valid insideCLASSsection and stands for the base class of the cur-
rent class. It is empty if the class doesn’t have any base classes.

TYPE Only valid insidePARAMsection and stands for the parameter type there.

7

Dra
ft

B Appendix B: Example of a Template File

This appendix contains a full example of a template file:

// Generated by cpp2any at $DATE
//
// Don’t edit directly, your changes will be lost!

import "unknwn.idl";
import "oaidl.idl";

{{{ ENUM*
[helpstring("$HELP")]
typedef enum ${NAME}_Tag
{

{{{ ENTRY
[helpstring("$HELP")]
$NAME${VALUE+= $VALUE}$,
}}}

} $NAME;
}}}

// forward declare all interfaces
{{{ CLASS
interface I$NAME;
}}}

{{{ CLASS
[

object,
dual,
uuid(${IID_$NAME}), // IID_$NAME
helpstring("$HELP")

]
interface I$NAME : ${BASE-IDispatch}
{
{{{ METHOD

[helpstring("$HELP")]
HRESULT $NAME({{{ PARAM* {+, } {0void}

[$INOUT] $TYPE $NAME}}});

8

Dra
ft

}}}
};
}}}

[
uuid(${LIBID_$NAME}), // LIBID_$NAME
helpstring("$HELP"),
version(1.0)

]
library $NAME
{

importlib("stdole2.tlb");

{{{ CLASS
[

uuid(${CLSID_$NAME}), // CLSID_$NAME
helpstring("$HELP")

]
coclass $NAME
{

[default] interface I$NAME;
};
}}}

};

9

